
ADEP Designer - Style Sheets

Style Editor
You can edit the styles in the style editor. This
contains up to � ve palettes, depending on the
object type you are formatting.
The appropriate options will be available for the
object you are styling. The example here is for a
text � eld and therefore you can set properties for
the caption and value text formatting. If on the
other hand you were styling a subform, the caption
text formatting would not be available, as subforms
do not have captions.
The style editor palettes will be very familiar to
you, as they re� ect most of the options that are
available in the main object, layout, border, font
and paragraph palettes.

Inheritance
When developing styles, you can inherit properties from an existing common style. For
example you can set up a common style for caption text formatting properties and then set up
your object styles to inherit these common properties.
You can also override any individual property from an inherited common style.

Applying a Style
You can apply a style to the objects on the form in a couple of ways.
First, if the style catelog is open, you can select the object and right-click
on an appropriate style and select "Apply style" from the menu.
You can also apply styles directly from the styles toolbar. If you select an
object, the pull down list in the styles toolbar will list all of the available
styles (both from the internal styles sheet and from any external style
sheets), appropriate to that object.

Once you have applied a style to an object, you still have the
option of overriding any of the formatting properties from the
layout, border, font or paragraph palettes. Overridden properties
are indicated by an asterisk in the relevant toolbar or palette.
Reapplying a style will remove any overrides from the object.

Style Sheets
Style sheets provide a new and robust way in which you can easily create and manage a consistent
appearance for your forms. Using ADEP Designer, you can create internal style sheets (which will control the
appearance of objects within the form) or you can create external/standalone style sheets (which your forms
can then reference).
Internal style sheets are useful if you are developing a single form. Once you have set up an object style as
to how you want the object to appear, you can quickly apply that style to new objects.
External style sheets are very powerful and will really help you if you are developing multiple forms that
need to have the same look and feel.
A form can have a mixture of internal and external style sheets. In addition, you have complete � exibility in
how you embed/extract style sheets and apply them to your forms.
The basic approach is the same for internal and external style sheets. When you create an external style
sheet in ADEP Designer, the page in the work space will have a light green color to indicate that you are in
style sheet edit mode, as opposed to normal form development. The external style sheet will have new � le
extension (.xfs).

Style Catelog
The style catelog is central to how you work with style sheets. This will list all of the styles that are available
in the form (both from the internal and the external style sheets). You can open the style catelog from the
Windows menu.

Style catelog menu

Internal style menu

External style menu

Internal style sheet

External style sheet

Style catelog buttons

Internal style buttons

Create a new style sheet

Add an existing style sheet

Apply default style

Set as default style

Create a new style

Delete selected style

niall.odonovan@assuredynamics.com www.assuredynamics.com

Niall O’Donovan

Niall O’Donovan is owner and senior consultant at
Assure Dynamics. Using Adobe Digital Enterprise
Platform and Flash Builder, Niall develops dynamic
solutions for clients. He quali� ed as a Civil Engineer
in 1988 and has since been a strong advocate of
technologies to solve technical problems. He has
extensive ADEP Designer experience. Niall is a
regular contributor in the ADEP community and
shares solutions with developers.

Assure Dynamics

Assure Dynamics works with leading companies
and government agencies in developing dynamic
solutions.
Assure Dynamics provide consultancy services for
turnkey solutions, where we design and develop the
solution for you.

Assure Dynamics Reference Cards

Objects you
can style

Common Styles
You can create a common style, which is a generic style that can be referenced by any object type. For
example, you can de� ne a single common style with properties that can be inherited by other objects.
You can use a common style to de� ne the caption text formatting properties, the value text formatting
properties, the border properties or any combination of these.
Individual styles can then inherit the common style. In addition you can override any aspect of the common
style that you wish to change for the individual style. The implementation of style sheets gives you complete
� exibility and control.

Signature
Field

Button Exclusion
Group

Radio
Button

List Box Password
Field

Date/Time
Field

Subform Decimal
Field

Drop-down
List

Text Check Box Numeric
Field

Image
Field

Text Field Flash
Field

ADEP Designer - Style Sheets

Style Editor
You can edit the styles in the style editor. This
contains up to � ve palettes, depending on the
object type you are formatting.
The appropriate options will be available for the
object you are styling. The example here is for a
text � eld and therefore you can set properties for
the caption and value text formatting. If on the
other hand you were styling a subform, the caption
text formatting would not be available, as subforms
do not have captions.
The style editor palettes will be very familiar to
you, as they re� ect most of the options that are
available in the main object, layout, border, font
and paragraph palettes.

Inheritance
When developing styles, you can inherit properties from an existing common style. For
example you can set up a common style for caption text formatting properties and then set up
your object styles to inherit these common properties.
You can also override any individual property from an inherited common style.

Applying a Style
You can apply a style to the objects on the form in a couple of ways.
First, if the style catelog is open, you can select the object and right-click
on an appropriate style and select "Apply style" from the menu.
You can also apply styles directly from the styles toolbar. If you select an
object, the pull down list in the styles toolbar will list all of the available
styles (both from the internal styles sheet and from any external style
sheets), appropriate to that object.

Once you have applied a style to an object, you still have the
option of overriding any of the formatting properties from the
layout, border, font or paragraph palettes. Overridden properties
are indicated by an asterisk in the relevant toolbar or palette.
Reapplying a style will remove any overrides from the object.

Style Sheets
Style sheets provide a new and robust way in which you can easily create and manage a consistent
appearance for your forms. Using ADEP Designer, you can create internal style sheets (which will control the
appearance of objects within the form) or you can create external/standalone style sheets (which your forms
can then reference).
Internal style sheets are useful if you are developing a single form. Once you have set up an object style as
to how you want the object to appear, you can quickly apply that style to new objects.
External style sheets are very powerful and will really help you if you are developing multiple forms that
need to have the same look and feel.
A form can have a mixture of internal and external style sheets. In addition, you have complete � exibility in
how you embed/extract style sheets and apply them to your forms.
The basic approach is the same for internal and external style sheets. When you create an external style
sheet in ADEP Designer, the page in the work space will have a light green color to indicate that you are in
style sheet edit mode, as opposed to normal form development. The external style sheet will have new � le
extension (.xfs).

Style Catelog
The style catelog is central to how you work with style sheets. This will list all of the styles that are available
in the form (both from the internal and the external style sheets). You can open the style catelog from the
Windows menu.

Style catelog menu

Internal style menu

External style menu

Internal style sheet

External style sheet

Style catelog buttons

Internal style buttons

Create a new style sheet

Add an existing style sheet

Apply default style

Set as default style

Create a new style

Delete selected style

niall.odonovan@assuredynamics.com www.assuredynamics.com

Niall O’Donovan

Niall O’Donovan is owner and senior consultant at
Assure Dynamics. Using Adobe Digital Enterprise
Platform and Flash Builder, Niall develops dynamic
solutions for clients. He quali� ed as a Civil Engineer
in 1988 and has since been a strong advocate of
technologies to solve technical problems. He has
extensive ADEP Designer experience. Niall is a
regular contributor in the ADEP community and
shares solutions with developers.

Assure Dynamics

Assure Dynamics works with leading companies
and government agencies in developing dynamic
solutions.
Assure Dynamics provide consultancy services for
turnkey solutions, where we design and develop the
solution for you.

Assure Dynamics Reference Cards

Objects you
can style

Common Styles
You can create a common style, which is a generic style that can be referenced by any object type. For
example, you can de� ne a single common style with properties that can be inherited by other objects.
You can use a common style to de� ne the caption text formatting properties, the value text formatting
properties, the border properties or any combination of these.
Individual styles can then inherit the common style. In addition you can override any aspect of the common
style that you wish to change for the individual style. The implementation of style sheets gives you complete
� exibility and control.

Signature
Field

Button Exclusion
Group

Radio
Button

List Box Password
Field

Date/Time
Field

Subform Decimal
Field

Drop-down
List

Text Check Box Numeric
Field

Image
Field

Text Field Flash
Field

ADEP Designer - Setting up a form for Flash Flash Builder 4.5.0

Basic setup in ADEP Designer

Make sure that you open your form in ADEP Designer (version 10 or above). The Flash object is not available
in earlier versions of Designer.

Essentials:
• In the File > Form Properties > Defaults set the Target Version to 10.0 or later. Users will need either

Acrobat X or Adobe Reader X (version 10.1.0 or later) to properly view the form.
• Save the form as a Dynamic XML Form in the save-as dialog.
• Drag a Flash object onto the form and associate with a swf � le. In the Object > Field palette, tick Embed

Flash Data.
• Size the Flash object to the same aspect ratio as the dimensions of the swf in Flash Builder.
• Setup the Flash object as you want it to appear on the form. For example, when how the swf is

activated, deactivated and if it is to appear in a � oating window.
• Setup a script object, in which you can place functions to communicate with the swf. This will centralise

your script and you can then decide which objects in your form will call the functions.

Basic setup in Flash Builder

Flash Builder 4.5.0 is the o� cial supported version for developing Flash assets (.swf) for ADEP Designer’s
Flash object.

Essentials:
• If using Flash Builder 4.5.1, make sure you set the Flex Compiler to Flex 4.5.0.
• Set the Flex Build Path to Merged into code. This will package all of your code into the .swf.
• Include an applicationComplete line to re-size the swf, as the user re-sizes/zooms the PDF:

• You will use ActionScript in Flash Builder to create functions that will communicate with the XFA form.

<s:Application
 applicationComplete="stage.scaleMode = StageScaleMode.EXACT_FIT;"
 ... />

Setting up ADEP Designer to send data to the embedded Flash asset (swf)

Once the swf is activated, it will � re its creationComplete script and the updateName() function will be
registered in the XFA form. Note:

• The Flash object’s classname is exObject. You can invoke the registered function in the swf, using this
script:

• In this script, FlashField is the name of the Flash object. updateName is the function in the swf and
empDetails is the single parameter that the function is expecting.

Developing the swf in Flash Builder to receive data from the XFA form

You need to include script in the swf that allows the communication between the XFA form and the swf. You
use the ExternalInterface.addCallback() to register the functions:

• For example, within the swf we have a function updateName(). In order for the XFA form to see and call
the function, we � rst need to register it. The following is run at creationComplete:

• The ExternalInterface.addCallback() has two parameters: the � rst parameter is the name that the XFA
form will use to call the function. The second parameter is the name of the function within the swf.
For simplicity, we have used the same name in the XFA form and in the swf.

private function start():void {
 // Setup interface: registering the swf updateName function in the form
 ExternalInterface.addCallback("updateName" , updateName);
}

// Call the registered swf function updateName and pass data

FlashField.ui.exObject.invoke("updateName", empDetails);

Setting up ADEP Designer to receive data from the embedded Flash asset (swf)

The swf will call the photo function and pass through the two parameters from the swf. You can then use
this data to update objects in your form:

• The parameters have the same name as those used in the swf’s ExternalInterface.call(), but that is just
for convenience. We could have used di� erent names for the parameters in the XFA form.

Developing the swf in Flash Builder to send data to the XFA form

To push data back into the XFA form, you will need to use the ExternalInterface.call() to � re the script in the
form:

• For example, the following ActionScript function calls the photo function that is in the comms script
object, in the XFA form. The photo function in the XFA form is expecting two parameters:

• Note that you can use a relative reference to the function (photo) in the XFA form’s script object
(comms).

private function sendPic():void {
 ExternalInterface.call("comms.photo" , encodedPhoto, encodedQR);
}

function photo(encodedPhoto, encodedQR) {

 yourPhoto.rawValue = encodedPhoto;

 yourQRCode.rawValue = encodedQR;

} // End of function

www.assuredynamics.com

ADEP Designer - Setting up a form for Flash Flash Builder 4.5.0

Basic setup in ADEP Designer

Make sure that you open your form in ADEP Designer (version 10 or above). The Flash object is not available
in earlier versions of Designer.

Essentials:
• In the File > Form Properties > Defaults set the Target Version to 10.0 or later. Users will need either

Acrobat X or Adobe Reader X (version 10.1.0 or later) to properly view the form.
• Save the form as a Dynamic XML Form in the save-as dialog.
• Drag a Flash object onto the form and associate with a swf � le. In the Object > Field palette, tick Embed

Flash Data.
• Size the Flash object to the same aspect ratio as the dimensions of the swf in Flash Builder.
• Setup the Flash object as you want it to appear on the form. For example, when how the swf is

activated, deactivated and if it is to appear in a � oating window.
• Setup a script object, in which you can place functions to communicate with the swf. This will centralise

your script and you can then decide which objects in your form will call the functions.

Basic setup in Flash Builder

Flash Builder 4.5.0 is the o� cial supported version for developing Flash assets (.swf) for ADEP Designer’s
Flash object.

Essentials:
• If using Flash Builder 4.5.1, make sure you set the Flex Compiler to Flex 4.5.0.
• Set the Flex Build Path to Merged into code. This will package all of your code into the .swf.
• Include an applicationComplete line to re-size the swf, as the user re-sizes/zooms the PDF:

• You will use ActionScript in Flash Builder to create functions that will communicate with the XFA form.

<s:Application
 applicationComplete="stage.scaleMode = StageScaleMode.EXACT_FIT;"
 ... />

Setting up ADEP Designer to send data to the embedded Flash asset (swf)

Once the swf is activated, it will � re its creationComplete script and the updateName() function will be
registered in the XFA form. Note:

• The Flash object’s classname is exObject. You can invoke the registered function in the swf, using this
script:

• In this script, FlashField is the name of the Flash object. updateName is the function in the swf and
empDetails is the single parameter that the function is expecting.

Developing the swf in Flash Builder to receive data from the XFA form

You need to include script in the swf that allows the communication between the XFA form and the swf. You
use the ExternalInterface.addCallback() to register the functions:

• For example, within the swf we have a function updateName(). In order for the XFA form to see and call
the function, we � rst need to register it. The following is run at creationComplete:

• The ExternalInterface.addCallback() has two parameters: the � rst parameter is the name that the XFA
form will use to call the function. The second parameter is the name of the function within the swf.
For simplicity, we have used the same name in the XFA form and in the swf.

private function start():void {
 // Setup interface: registering the swf updateName function in the form
 ExternalInterface.addCallback("updateName" , updateName);
}

// Call the registered swf function updateName and pass data

FlashField.ui.exObject.invoke("updateName", empDetails);

Setting up ADEP Designer to receive data from the embedded Flash asset (swf)

The swf will call the photo function and pass through the two parameters from the swf. You can then use
this data to update objects in your form:

• The parameters have the same name as those used in the swf’s ExternalInterface.call(), but that is just
for convenience. We could have used di� erent names for the parameters in the XFA form.

Developing the swf in Flash Builder to send data to the XFA form

To push data back into the XFA form, you will need to use the ExternalInterface.call() to � re the script in the
form:

• For example, the following ActionScript function calls the photo function that is in the comms script
object, in the XFA form. The photo function in the XFA form is expecting two parameters:

• Note that you can use a relative reference to the function (photo) in the XFA form’s script object
(comms).

private function sendPic():void {
 ExternalInterface.call("comms.photo" , encodedPhoto, encodedQR);
}

function photo(encodedPhoto, encodedQR) {

 yourPhoto.rawValue = encodedPhoto;

 yourQRCode.rawValue = encodedQR;

} // End of function

www.assuredynamics.com

