
Please wait...

If this message is not eventually replaced by the proper contents of the document, your PDF
viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by
visiting http://www.adobe.com/products/acrobat/readstep2.html.

For more assistance with Adobe Reader visit http://www.adobe.com/support/products/
acrreader.html.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries. Mac is a trademark
of Apple Inc., registered in the United States and other countries. Linux is the registered trademark of Linus Torvalds in the U.S. and other
countries.

..\..\Graphics\Assure Dynamics\Banner.png
..\..\Graphics\Assure Dynamics\Warning Sign 04.gif
Test Area
Hover over the script (JavaScript in the calculate event of the price object) this refers to the object that contains the script.
Hover over the script (FormCalc in the calculate event of the price object) $ refers to the object that contains the script.
LiveCycle Designer is used to develop XFA forms. XFA stands for XML Forms Architecture. XFA forms support two scripting languages: FormCalc and JavaScript.

FormCalc was developed by Adobe and is very useful for simple calculations. It also includes a number of built-in functions that come in very handy when dealing with time, dates and financial functions. FormCalc will only work in XFA forms that are rendered as PDF.

JavaScript is an object-oriented language and is very powerful. The particular syntax in XFA forms is slightly different to that in AcroForms or Core JavaScript. However, there are many helpful guides available. Another benefit is that JavaScript will work irrespective of whether the form is rendered as a PDF or a HTML form.

The XFA Specification includes a number of different models, including the Document Object Models (DOM) and the Scripting Object Model (SOM).

The main DOMs include:
 - XFA DOM is a wrapper for all other DOMs. You would sometimes script against this DOM, for example, xfa.resolveNode().
 - Template DOM, which contains information about the form components.
 - Data DOM, which holds information on the data structure and content.
 - Form DOM, which contains the merged Template DOM and Data DOM. Most of the scripting is done against this DOM.
 - Layout DOM, which contains page specific information, for example, xfa.layout.pageCount().

The SOM provides a structure for referencing values, properties and methods within a DOM. SOM expressions are used to correctly reference objects in the form. You can get detailed information in this scripting reference.

The examples demonstrate the different SOM expressions, depending on the scripting language used.
The test area is used to demonstrate the parts of the SOM expressions. Each example includes a script, demonstrating different aspects of SOM expressions.

When you hover over the parts of the script, the corresponding objects are highlighted in the test area.
..\..\Graphics\Assure Dynamics\Warning_green.gif
SOM Expression Example 1 of 11
Hover over the script (JavaScript in the click event of the set price button)
Hover over the script (FormCalc in the click event of the set price button)
Subform1
Hover over the script (JavaScript in the click event of the set price button)
Hover over the script (FormCalc in the click event of the set price button)
This example shows us the benefit in naming objects as they are dragged onto the page. Here the price objects and subforms are given unique names.

This means that the SOM expressions can simply reference the required object by name.

The two objects in the first example, the button that contains the script in the click event and the price field, are in the same container (eg subform). Therefore the SOM expression can use a relative reference.

In the second example the price field is in a named subform. Therefore the relative reference needs to include the name of the subform.
..\..\Graphics\Assure Dynamics\Warning_green.gif
SOM Expression Example 2 of 11
Subform1
Hover over the script (JavaScript in the click event of the set price button)
Hover over the script (FormCalc in the click event of the set price button)
The same principles apply when objects are on different pages.

By default, pages are not named when you insert a new page. This means that you have to name the page manually. This is not a hardship as you can quickly name the page in the hierarchy.

By default Master Pages are names begin with a capital "P". For example, "Page1", "Page2", etc. Because of this, I tend to name design pages with a lowercase "p". For example, "page1", "page2", etc. This helps me to keep track of what the SOM expression is referencing.

In this example we have a button that is notionally placed on page3a. The script in the click event is referencing an object that is notionally on a different page, eg page3b.

Because the pages are named (in particular page3b) and the subform and object are also named, it makes it very easy to provide a relative SOM expression.

There is a very convenient way to build SOM expressions in LiveCycle Designer. When you are in the Script Editor, with the mouse you can hover over any object in the form. As you hover over an object, if you press the Control button, the mouse will change into a "V". While still holding the Control key, if you click the object, LiveCycle will insert a relative SOM expression for that object directly into you script. Holding Control+Shift and clicking will insert an absolute reference.
..\..\Graphics\Assure Dynamics\SOM assist 01.jpg
 - Step 1: Click into the Script Editor.
 - Step 2: Hover over the object you want to reference in your script.
 - Step 3: Press and hold the Control key and click the object.
..\..\Graphics\Assure Dynamics\Warning_green.gif
SOM Expression Example 3 of 11
Subform1
Hover over the script (JavaScript in the click event of the set price button)
Hover over the script (FormCalc in the click event of the set price button)
Everything so far has been best practice. All objects and containers have been given unique names. This makes it very easy to form SOM expressions. Please, please, please ALWAYS name your objects. It will save you a lot of trouble!

You should name objects (pages, subforms and fields) as soon as you drag them onto the page. If you leave it to later on, then your scripts may fail when you subsequently name the objects.

When naming objects, you should avoid reserved names, such as "event", "this", "w", "x", etc.

In this example, the page that contains the Price field is not named. This is NOT recommended.

Here, the page that contains the Price field is unnamed. You will immediately see the problem. The script in the click event of the set price button needs a more complex SOM expression, in order to find the Price field. It is the fifth page, but because it is not named, it is referenced "form1.#subform[4]". "form1" refers to the top node in our form (see the hierarchy). Following this, the unnamed page is referenced as the fifth instance of a subform, using a zero numbering system. This is indicated by the [4] in square brackets. If you are using JavaScript, then this is where your troubles can begin, because arrays are defined in square brackets.

This is why we need to resolve the unnamed node. In JavaScript xfa.resolveNode("form1.#subform[4]") will define the unnamed page and allow the Price field to be referenced. However it is not efficient and should be avoided.

If you are using FormCalc, you do not need to use xfa.resolveNode, but you still need to provide a complete reference to the unnamed page: "form1.#subform[4]".

If Subform1 was also unnamed, then it would also need to be included in the xfa.resolveNode().

Lesson: Always name your objects!
..\..\Graphics\Assure Dynamics\Warning_red.gif
SOM Expression Example 4 of 11
Hover over the script (JavaScript in the click event of the set prices button)
Hover over the script (FormCalc in the click event of the set prices button)
If we go back to the situation where the object containing the script and the referenced object are in the same container. Similar to the example on page 2.

This time however there are two Price fields with the same name: "price[0]" and "price[1]". The numbers in the square brackets are the instance numbers for the objects that have the same name. This is a zero-based numbering system.

This time because there are multiple objects with the same name, we need to resolve the nodes again.

xfa.resolveNode() is a search. The search will start in the current container and work its way UP the hierarchy. The first occurrence of the object that it finds will be used in the script.

In this example there are two lines of script in the click event of the set prices button. What we INTEND is that the first line sets the first price field to "10" and the second to "25". However we have used price in both lines of the script.

Click the button and hover over the script and you will see the problem. The first xfa.resolveNode() goes and finds the first occurrence of price, eg "price[0]" and sets its value to "10". The second line carries out a similar search but finds the first occurrence and overrides the previous value with "25".

Not much good!
..\..\Graphics\Assure Dynamics\Warning_red.gif
SOM Expression Example 5 of 11
Hover over the script (JavaScript in the click event of the set prices button)
Hover over the script (FormCalc in the click event of the set prices button)
To sort out the problem with the previous example, we can include the instance number for both price fields, in the xfa.resolveNode().

We are still using xfa.resolveNode() to search for the object, but we are being more specific. For example xfa.resolveNode("price[1]") is specifically referencing for the second instance of the price object only.

Because here, we are providing the SOM expression of the particular instance we require, xfa.resolveNode() is not search up through the hierarchy.

While this works, it is not efficient and there is a performance hit when using xfa.resolveNode(). In this case it is also unnecessary, as we could have named the object differently. Thus eliminating the need to resolve the nodes.
..\..\Graphics\Assure Dynamics\Warning_red.gif
SOM Expression Example 6 of 11
Hover over the script (JavaScript in the click event of the set prices button)
Hover over the script (FormCalc in the click event of the set prices button)
If we take this example back to best practice, by naming the objects uniquely.

Here we have named the two price objects with unique names, "price1" and "price2". This way we can avoid the xfa.resolveNode() and reference each object directly.

To implement this when developing forms, you really need to be naming objects as you drag them onto the form. This way your script will be right from the start.

When naming objects it is useful to think about the purpose of the object, eg what data is it capturing. This is particularly important when processing the form data, as the object name is included in the XML data.

We tend to use camel-case, when naming objects. For example, "firstName", "lastName", "startDate", "customerCity", etc. You can establish your own naming convention, but you should then try and apply it consistently.

When naming objects there are a few things to avoid:
 - Reserved words, which already have a meaning and purpose in the XFA Specification.
 - Using a minus sign(-) in the name, eg first-name. LC Designer will accept the name, but scripts may fail.
 - You can't begin an object name with a numeric character.
..\..\Graphics\Assure Dynamics\Warning_green.gif
SOM Expression Example 7 of 11
Hover over the script (JavaScript in the calculate event of the total object)
Hover over the script (FormCalc in the calculate event of the total object)
Having said that it is best practice to give object unique names, there are situations where there is a benefit of having the same name. In particular if you are using FormCalc.

Take this example here where we have two numeric fields, "price[0]" and "price[1]". You can see that they have the same name "price" and that there are two instances.

The "total" object is summing the two "price" objects.

If the scripting language is JavaScript, then this is an inefficient way of referencing the objects. Here we have to use xfa.resolveNode() in order to reference each instance of the "price" object. So if you are using JavaScript, you would give each object a unique name, as per the previous example.

However if you are using FormCalc, then there is a benefit having the same name. Using the FormCalc Sum function we can reference all instances of the "price" object in the container by using the asterisks wildcard (*).

Sum(price[*]) will look for all instances and add them together.

So in this example, if you are using FormCalc there may be a good reason to give certain objects the same name.
..\..\Graphics\Assure Dynamics\Warning_amber.gif
SOM Expression Example 8 of 11
Hover over the script (JavaScript in the calculate event of the total object in Table1)
Hover over the script (FormCalc in the calculate event of the total object in Table1)
xfa.resolveNode() can be very useful. So far, we have seen it used where a container (page or subform) is unnamed and where there are multiple objects with the same name. There is another situation where you would use xfa.resolveNode().

Here we have a table, with a repeating row (Row1). This is a common approach where you want to allow for multiple instances at runtime. Because we want to reference each instance of Row1, we need to use xfa.resolveNode() in a loop.

John Brinkman points out that using xfa.resolveNode() is not as efficient as using xfa.resolveNodes(). Note the plural!

In this example we first declare a variable nRows and set its value to the number of instances of Row1. Note that we are using the underscore (_) shorthand for instanceManager. For example, "Table1._Row1. count;" is equivalent to "Table1.instanceManager.Row1. count;".

Checkout the next example, which uses xfa.resolveNodes() instead.

Again, in this simple example, we can see that FormCalc can achieve the same result in a simpler way.
..\..\Graphics\Assure Dynamics\Warning_amber.gif
SOM expression
Price
total
Table1
SOM Expression Example 9 of 11
Hover over the script (JavaScript in the calculate event of the total object in Table1)
Hover over the script (FormCalc in the calculate event of the total object in Table1)
John Brinkman's FormFeed blog provides the most comprehensive explanation of the XFA specification and covers a lot of methods in great depth. In this post he explains the benefits of using xfa.resolveNodes() to return a list of multiple nodes.

In the previous example we used xfa.resolveNode() to return a single node. However this is processed many times, eg the number of rows in the table. Here we are using xfa.resolveNodes() to return the list of nodes in the repeating row of Table1. Once we have this nodelist we can use two methods to extract the information:
 - .length, which will return the number of nodes in the list. Here we use this for the loop: i<nRows.length.
 - .item(n), which will return the nth item in the nodelist. For example, when i=4, it will return Table1.Row1[4].price.

This is much more efficient as the xfa.resolveNodes() is only processed once.
..\..\Graphics\Assure Dynamics\Warning_green.gif
SOM expression
Price
total
Table1
SOM Expression Example 10 of 11
Hover over the script (JavaScript in the calculate event of the total object in Table1)
Hover over the script (FormCalc in the calculate event of the total object in Table1)
In this final example, we make a further improvement to the xfa.resolveNodes() method.

By default xfa.resolveNodes() anchors the search to the root node (xfa). If however we anchored the search to the object that contains the script, "total", then we can make the search more efficient.

In the previous example we used "xfa.resolveNodes("Table1.Row1[*].price");". This time we will anchor the search in the total field, "total.resolveNodes("Row1[*].price");".

Because the total object and Row1 are both in Table 1, we can use a shorter relative reference in the xfa.resolveNodes().
..\..\Graphics\Assure Dynamics\Warning_green.gif
SOM expression
Price
total
Table1
SOM Expression Example 11 of 11
4.0
www.assuredynamics.com
27/02/2011
Niall O'Donovan
A quick look at SOM expressions
Assure Dynamics
13/06/2011
	Click here to visit our website...:
	Click here to visit our website...:
	resetButton1:
	resetButton2:
	resetButton3:
	resetButton4:
	price:
	Declare a variable vTotal and give it an initial value of zero...:
	Declare a variable nRows and set its value to the list of nodes for the price object in the repeating Row1...:
	The script is in the total field in Table1. "$" refers to itself...:
	Sums the price object in ALL instances of Row1 within Table1...:
	Click here to add a row...:
	Click here to set the price...:
	aPageA:
	aPageB:
	price1:
	price2:
	total:
	Cell1:
	Click here to see what xfa.resolveNode() returns...:
	Click here to see what xfa.resolveNodes() returns...:

